Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Fabricating polymeric composites with desirable characteristics for electronic applications is a complex and costly process. Digital light processing (DLP) 3D printing emerges as a promising technique for manufacturing intricate structures. In this study, polymeric samples are fabricated with a conductivity difference exceeding three orders of magnitude in various portions of a part by employing grayscale DLP (g‐DLP) single‐vat single‐cure 3D printing deliberate resin design. This is realized through the manipulation of light intensity during the curing process. Specifically, the rational resin design with added lithium ions results in the polymer cured under the maximum UV‐light intensity exhibiting higher electrical resistance. Conversely, sections that are only partially cured retains uncured monomers, serving as a medium that facilitates ion mobility, consequently leading to higher conductivity. The versatility of g‐DLP allows precise control of light intensity in different regions during the printing process. This characteristic opens up possibilities for applications, notably the low‐cost, facile, and rapid production of complex electrical circuits and sensors. The utilization of this technique makes it feasible to fabricate materials with tailored conductivity and functionality, providing an innovative pathway to advance the accelerated and facile creation of sophisticated electronic devices.more » « less
- 
            Abstract Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on‐the‐fly by using laser‐assisted DIW with an actuation strain up to −40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one‐step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW‐printed functionally freestanding LCEs with the DLP‐printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.more » « less
- 
            Origami folding and thin structure buckling are intensively studied for structural transformations with large packing ratio for various biomedical, robotic, and aerospace applications. The folding of circular rings has shown bistable snap‐through deformation under simple twisting motion and demonstrates a large area change to 11% of its undeformed configuration. Motivated by the large area change and the self‐guided deformation through snap‐folding, it is intended to design ring origami assemblies with unprecedented packing ratios. Herein, through finite‐element analysis, snap‐folding behaviors of single ring with different geometries (circular, elliptical, rounded rectangular, and rounded triangular shapes) are studied for ring origami assemblies for functional foldable structures. Geometric parameters' effects on the foldability, stability, and the packing ratio are investigated and are validated experimentally. With different rings as basic building blocks, the folding of ring origami assemblies including linear‐patterned rounded rectangular rings, radial‐patterned elliptical rings, and 3D crossing circular rings is further experimentally demonstrated, which show significant packing ratios of 7% and 2.5% of the initial areas, and 0.3% of the initial volume, respectively. It is envisioned that the reported snap‐folding of origami rings will provide alternative strategies to design foldable/deployable structures and devices with reliable self‐guided deformation and large area change.more » « less
- 
            Abstract Shape‐morphing magnetic soft materials, composed of magnetic particles in a soft polymer matrix, can transform shape reversibly, remotely, and rapidly, finding diverse applications in actuators, soft robotics, and biomedical devices. To achieve on‐demand and sophisticated shape morphing, the manufacture of structures with complex geometry and magnetization distribution is highly desired. Here, a magnetic dynamic polymer (MDP) composite composed of hard‐magnetic microparticles in a dynamic polymer network with thermally responsive reversible linkages, which permits functionalities including targeted welding for magnetic‐assisted assembly, magnetization reprogramming, and permanent structural reconfiguration, is reported. These functions not only provide highly desirable structural and material programmability and reprogrammability but also enable the manufacturing of functional soft architected materials such as 3D kirigami with complex magnetization distribution. The welding of magnetic‐assisted modular assembly can be further combined with magnetization reprogramming and permanent reshaping capabilities for programmable and reconfigurable architectures and morphing structures. The reported MDP are anticipated to provide a new paradigm for the design and manufacture of future multifunctional assemblies and reconfigurable morphing architectures and devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
